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Use of infrared microspectroscopy to elucidate a
specific chemical signature associated with
hypoxia levels found in glioblastoma†

Christophe Sandt,*a Céline Nadaradjane,a,b Rosalie Richards,b Paul Dumasa and
Violaine Séeb

Hypoxia is a common feature of solid tumours and is associated with poor prognosis, resistance to radio-

and chemotherapy, and tumour aggressiveness. For predictive purposes as well as for improved thera-

peutic intervention, it is increasingly needed to have direct and specific diagnostic tools in order to

measure the extent of, and changes in, tumour hypoxia. In this article, we have investigated the potential

of Fourier Transform Infrared (FTIR) microspectroscopy, at cellular and subcellular resolution, for detect-

ing hypoxia-induced metabolic changes in brain tumour (glioblastoma) cell lines and in short term

primary cultures derived from patient samples. The most prominent and common changes observed

were the increase in glycogen (specifically in the U87MG cell line) and lipids (all cell lines studied).

Additionally, each cell line presented specific individual metabolic fingerprints. The metabolic changes did

not evolve markedly with time (from 1 to 5 days hypoxic incubation), and yet were harder to detect under

chronic hypoxic conditions, which is consistent with cellular adaptation occurring upon long term

changes in the microenvironment. The metabolic signature was similar regardless of the severity of the

hypoxic insult and was replicated by the hypoxia mimetic drug dimethyloxalylglycine (DMOG). To investi-

gate any specific changes at subcellular levels and to improve the sensitivity of the detection method,

spectra were recorded separately in the cytoplasm and in the nucleus of D566 glioblastoma cells, thanks

to the use of a synchrotron source. We show that this method provides improved detection in both cell

compartments. Whilst there was a high spectral variability between cell lines, we show that FTIR micro-

spectroscopy allowed the detection of the common metabolic changes triggered by hypoxia regardless

of cell type, providing a potential new approach for the detection of hypoxic tumours.

Introduction

The tumour microenvironment, and in particular the low
oxygen levels found in solid tumours, plays a critical role in
their development and aggressiveness.1 Indeed, tumour
hypoxia has been extensively described as associated with
radio- and chemotherapy resistance as well as with increased
metastatic properties.2–4 Such acquired phenotypes are essen-
tially triggered by the transcription of a number of genes
orchestrated by the transcription factor Hypoxia Inducible
Factor (HIF). As a matter of fact, high HIF levels have been
associated with bad prognosis for many solid tumours.5–11

However, HIF is not an ideal marker of tumour hypoxia, for

both technical and biological reasons.4,12 Antibody-based
detection poses the problem of sensitivity and specificity of
the antibody and immuno-labelling, and relies heavily on anti-
body quality. Moreover, HIF levels are dynamically regulated
due to the presence of negative feedback loops in the signal-
ling module13 and their transiency means that HIF levels may
not be directly correlated with cellular hypoxia.12 Moreover,
HIF levels can be increased by factors other than hypoxia,14–16

again pointing to a potential lack of correlation between HIF
and the extent of hypoxia. None of the other putative mole-
cular markers of hypoxia (e.g. HIF2, VEGF, EF5, GLUT1, CA9)
is exclusively hypoxia-specific.17–19 Nitroimidazole compounds
such as pimonidazole have previously been used to monitor
tissue hypoxia, yet have major drawbacks such as the
requirement of their administration to the patient prior to
detection, and low correlation with other hypoxia markers.20

As such, there is a crucial need for being able to directly
and non-invasively detect the extent of tumour hypoxia in
order to improve patient outcome prediction and therapeutic
strategies.
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The hypoxic state is not only characterized by the
expression of transcription factors, but also by metabolic
changes such as a shift from high-energy to low-energy phos-
phate ratio, up regulation of glycolysis,21,22 increased glucose
uptake, changes in triglyceride and steroid levels, and accumu-
lation of lipid micro-droplets.23 Many of these changes can be
detected by infrared spectroscopy, a method that probes the
specific infrared absorptions by molecular bond motions. We
hypothesized that infrared spectroscopy may be able to detect
hypoxia specific metabolic changes in tumours and be used as
a tool to measure hypoxia in tumour samples. Tumours are
highly heterogeneous, with hypoxic, normoxic and necrotic
regions,8,19,24 and the use of an infrared microscope would
allow the collection of spatially resolved information in tumour
biopsies, thereby avoiding misleading global measurements.

The infrared spectrum of a molecule is a fingerprint of the
nature, composition, and conformation of a given molecule. It
is a particularly sensitive method for detecting lipids, proteins
and carbohydrates in tissues.25–27 The infrared spectrum of a
cell or tissue is not only a fingerprint of its chemical compo-
sition, but also of its nature,28–30 physiological status,31,32 and
position in the cell cycle,33 and can therefore be used to
monitor physiological or pathological changes.34–36 Cells are
composed of around 70% proteins (dry w/w), while meta-
bolites only represent 3% of a cell mass. Therefore, infrared
spectroscopy will preferentially probe concentrations of the
main macromolecules whilst low levels of metabolites such as
lactate or pyruvate are less likely to be detected in an intact cell.
Since most cells or tissues do not undergo major metabolic
changes, sophisticated pattern recognition techniques are used
to detect and monitor the subtle changes in cell spectral signa-
tures and classify the spectra objectively. In hypoxia, where a
strong metabolic reprogramming occurs, with changes in cell
lipid and carbohydrate quantity and composition, the sensitivity
of infrared detection seems particularly suitable. Coupling the
infrared microscope to a synchrotron source can provide subcel-
lular resolution and the ability to study the chemical changes of
specific cell compartments, which may be important when orga-
nelle specific events are expected (e.g. during cellular respiration).

In this study we have used synchrotron radiation infrared
microspectroscopy to study the chemical composition of cells
cultured at several oxygen tensions and culture durations, on
whole individual cells, and at subcellular resolution in the
cytoplasm and nucleus. We have shown that metabolic
changes triggered by hypoxia can be detected irrespective of
the severity and duration of hypoxia, yet some of the changes
are subtle and/or cell line specific.

Experimental
Cell culture and hypoxic incubation

Cell lines. HeLa cells, U87MG and D566 human cell lines
were used in this study. HeLa cells are epithelial cells derived
from the cervical adenocarcinoma of a human female. U87MG
are astrocytoma cells derived from a grade IV glioblastoma

from human brain and adopt an epithelial morphology. D566
cells were derived from a glioblastoma from the brain of a
human patient and also adopt an epithelial morphology.
U87MG were obtained from ATCC (Teddington, UK), HeLa
cells from ECACC (Salisbury, UK) and the D566 cells were a
kind gift from Professor D. D. Bigner (Duke University Medical
Centre, USA). U87MG and D566 cells were maintained in MEM
supplemented with 1% sodium pyruvate (Life Technologies)
and 10% FCS (PAA). D566 cells were also supplemented with
1% non-essential amino acids (NEAA, Life Technologies).
HeLa cells were maintained in MEM plus 10% FCS and 1%
NEAA. All cells were maintained at 37 °C, under 5% CO2.

Short term primary cell culture. Samples of primary glio-
blastoma (GBM) tumours were received from patients under-
going craniotomy and resection, who had given informed
written consent to donate their tissue to the Walton Research
Tissue Bank, Walton Centre NHS Foundation Trust. Samples
were mechanically dissociated in MEM plus 1% penicillin–
streptomycin on a Petri dish before being transferred into dis-
sociation medium (10% trypsin 10X and 1% DNAse in MEM
plus 1% penicillin–streptomycin). The sample was incubated
for 15–30 min at 37 °C and triturated every 5 min. When a
homogeneous suspension was achieved the trypsin reaction
was stopped by adding 10 mL of growth medium. Cells were
centrifuged for 5 min at 3000 rpm to remove red blood cells
and debris. The pellet was re-suspended in growth medium
and seeded into a 75 cm2 tissue culture flask. Cells were used
for experiments between passages 2 and 5.

Hypoxic incubation and DMOG treatment. Prior to plating
on CaF2 coverslips, cells were counted using a Bio-Rad TC20
automated cell counter and seeded at a density of 5 × 105 cells
per mL. Cells exposed to 1% O2 were cultured in a Don
Whitley H35 Hypoxystation, and cells exposed to 0.1% O2 were
incubated in a New Brunswick Galaxy 48R hypoxic incubator.
When indicated, normoxic cells where treated with 0.5 mM
dimethyloxalylglycine (DMOG) for 24 h to mimic hypoxia.

Cell preparation for FTIR microspectroscopy. Cells were
measured directly on the CaF2 coverslips. After incubation,
cells were fixed in 4% formalin for 10 minutes, then rinsed
with distilled water and dehydrated at room temperature
under a laminar flow hood.

FTIR microspectroscopy

Spectra were recorded at the SOLEIL synchrotron facility on
the SMIS beamline, using the edge and constant field radi-
ation of a bending magnet.37 The synchrotron delivers 430 mA
current in the 4/4 filling and 3/4 hybrid modes and runs in the
top-up mode for injection (delivering near constant intensity).

Spectra were recorded in a transmission mode on a Nicolet
Continuum XL microscope (Thermo Fischer, Courtaboeuf,
France) equipped with a 50 × 50 µm2 liquid-nitrogen cooled
MCT/A detector, a 32×/NA 0.65 Schwarzschild objective and a
matching 32× condenser, and a Prior Proscan XYZ motorised
stage. The microscope was coupled to a Nicolet 5700 spectro-
meter (Thermo Fischer, Courtaboeuf, France) equipped with a
Michelson interferometer and a KBr beamsplitter. The spectro-
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meter and the microscope were continually purged with dry air
from a Parker-Balston FT-IR purge gas generator for atmospheric
control. The microscope was operated in a single aperture mode
and the knife-edge aperture was set at 20 × 20 µm2, for recording
the spectra of whole cells, and at 10 × 10 µm2 for recording the
spectra of nuclei and cytoplasms. Spectra were recorded with 128
scans at 4 cm−1 resolution. Spectral maps were recorded by raster
scanning the cells with steps of 3 µm in both directions with a
projected aperture size of 6 × 6 µm2. The background spectrum
was recorded from a clean spot on the CaF2 coverslip close to the
measured cells. A new background was collected after one hour.

Sampling

At least 50 cells per sample were deemed necessary for statistical
significance, so we collected between 60 and 100 spectra per
sample to ensure that an adequate number of spectra were of sat-
isfactory quality for statistical treatment. Cells with obvious Mie
scattering causing features (single isolated round cells, spherical
cells protruding from a flat smear, or cells with pyknotic nuclei)
were not measured. These cells are generally apoptotic and their
spectral signatures are not representative of the population.
Under all conditions tested, apoptosis remained below 10%.

Spectra were sorted by visual examination and by multivariate
statistical analysis to eliminate those that displayed anomalies in
their overall shape (Mie scattering, misalignment, etc.).

Replicate cell cultures were measured for each condition,
with the exception of primary cell cultures.

For subcellular resolution measurements, spectra were
recorded from at least 50 nuclei and 50 cytoplasms for each
sample, and analysed by Principal Component Analysis (PCA)
and difference spectroscopy.

Spectrum sorting

As stated above, spectra were sorted by visual inspection, prior
to further selection by a multivariate approach based on PCA.
Spectra with artefacts that could not be corrected by the avail-
able algorithms were eliminated prior to pretreatment and
statistical analysis. For eliminating Mie scattered spectra, the
following rejection criteria were used: splitting of the
1740 cm−1 CvO band from amide I, position of the amide I
band below 1650 cm−1, baseline offset, sine baseline shape,
intensity of shoulder at 1640 cm−1 in amide I above half
height, intensity of the shoulder at 1515 cm−1 in amide II,
width of the amide II, splitting between the amide II band and
the CH bending modes. Remaining outlier spectra were identi-
fied using multivariate statistical tools in The Unscrambler X
10.3 (Camo Inc., Norway). The Hotelling T2 ellipse and the
influence plot were used to remove the remaining outliers after
a first PCA round; spectra with high residuals and high weight
for the principal components collating up to 90% of the vari-
ance were removed, as were spectra out of the 95% Hotelling T2
ellipse and not connected to spectra within the ellipse.

Chemical maps

Chemical maps were generated with Omnic software (Thermo-
Fischer, Courtaboeuf, France) by plotting the integrated inten-

sity of the specific band area. A linear baseline correction
within the wavenumber range of the band was included in the
integration procedure. The limits for integration are given in
Table 1 together with main band assignments observed
between 950 and 4000 cm−1. The infrared spectrum is
separated into two regions: the CH range on one hand
(2800–3030 cm−1), which contains mainly absorptions from
C–H stretching vibrations of lipids, and proteins, and the
fingerprint range on the other hand (950–1800 cm−1), which
contains absorptions of stretching and deformation vibrations
from CvO, C–O, N–H, C–H, C–N, C–C, PvO bonds.

Pretreatments prior to multivariate analysis

Spectra were treated prior to analysis to eliminate sources of
variation, such as differences in cell thickness and light scat-
tering properties. All pretreatments were carried out in The
Unscrambler X 10.3.

Spectra were corrected by Extended Multiplicative Scattering
Correction (EMSC) in the fingerprint region or in the CH
region. First or second derivative spectra were systematically
computed for correcting baseline distortions, to improve the
resolving power and to check consistency with EMSC treated
data. Derivatives are presented whenever EMSC failed to give
the tightest clustering. First, a Savitzky–Golay smoothing was
performed (polynomial order 3, 9 or 21 points), and then a
Savitzky–Golay derivative filter was applied (polynomial order
3, 13 or 15 points). Unit Vector Normalisation (UVN) was
carried out to normalize the spectra. Since derivative spectra
become difficult to interpret (especially when analysing with
PCA), difference spectra were calculated for interpreting chemi-
cal changes between samples, provided that the spectra had a
unimodal distribution which was generally the case.

Principal component analysis

Because the differences between hypoxic and normoxic cell
spectra were expected to be subtle and hundreds of spectra
were needed for comparison and objective classification,
computerised pattern recognition methods were used. Spectra
were analysed by PCA, a multivariate statistical analysis that
seeks to express a large number of correlated variables as a
smaller number of orthogonal (independent) components.
PCA allows an easier overview of the data structure (evidencing
whether groups exist), explains relationships between variables
(redundancies, correlations and anti-correlations), and
unravels subtle changes that are hidden by the most evident
variations. The results of PCA can be given as a graphical
output with two types of plots. Score plots, where each
spectrum is represented by a point and similar spectra are
clustered together, are used to detect the presence of groups
(data structure). Loadings plots show the ‘principal
components’, linear combinations of the original spectral vari-
ables that explain the chemical information behind the data
structure. As principal components are independent, they can
reveal uncorrelated sources of variation.

PCA was performed in The Unscrambler X 10.3 on mean
centered data. Pretreated spectra were analysed independently
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in the two frequency domains. Six principal components were
computed by the NIPALS algorithm with leverage correction.
Two rounds of PCA were systematically performed; the first
round was used to detect and eliminate remaining outliers,
the second round was used to analyse the data structure.
When relevant, the Varimax rotation was applied to collate the
most significant principal components (PC) in a single PC.

Calculation of spectral differences

The most typical spectra for each group (those located in the
centre of the PCA cloud) were extracted and used to calculate
an average spectrum representative of that group. Typically 35
to 50 spectra were used for each group. Difference spectra were

computed by subtracting the mean normoxic spectrum from
the mean hypoxic spectrum and multiplying by ten.

Results
Hypoxic cells can be differentiated from normoxic cells by
their infrared spectra

We first aimed at investigating if the infrared spectra of cells
cultured in atmospheric O2 levels (21% O2, here called nor-
moxia) could be altered by culturing the same cells at 1% O2, a
typical O2 level found within the tumour mass.38,39 We used
2 glioblastoma cell lines (U87MG and D566) since glioblas-
toma are well described as hypoxic tumours and we compared

Table 1 Putative assignment of the bands found in the infrared spectra of glioblastoma cells

Band assignment between 950 and 4000 cm−1

Position
(cm−1) Vibration

Integration
limits Chemical moieties

Proteins
3300 ν NH Amide A
3070 Amide B
2960 ν C–H 3000–2950 CH3 from amino acids
1654 ν CvO, C–N, N–H 1720–1590 cm−1 Amide I Combination bands from

the protein backbone1540 δ N–H, C–N, C–C, C–O Amide II
1200–1380 δ N–H bend, ν C–N Amide III

Lipids
3010 ν CvC–H Unsaturated fatty acids
2954 νas C–H 3000–2950 CH3 from fatty acids
2922 νas C–H 2905–2945 CH2 from fatty acids
2875 νsym C–H CH3 from fatty acids and proteins
2850 νsym C–H CH2 from fatty acids
1740 ν CvO 1720–1780 CvO from lipid esters and phospholipids
1465 δ C–H CH2 from fatty acids
1452 δ C–H CH2 from fatty acids
1440 δ C–H CH2 cyclic
1380 δ C–H CH3 from fatty acids
1365 δ C–H CH2 from fatty acids
1220–1230 νas PvO Phospholipids
1170–1180 νas C–O Phospholipids
1080–1090 νsym PvO Phospholipids

Polysaccharides
3420 ν O–H C–OH
1400 COO− Carboxylic acids
1150 νas C–O, νas C–C 1000–1180 C–OH, C–OC, C–C Glycogen, glucose, ribose,

carbohydrates, protein
glycosylation

1120–1130 νas C–O, νas C–C C–O, C–C
1075–1085 νsym C–O, νsym C–C C–OH, C–OC, C–C
1045–1060 νsym C–O C–OH
1040 ν C–O of C–OH Ribose
1025 δ C–O, ν C–O of CH2OH Glycogen

Nucleic acids
1420 δ C–H Deoxyribose
1370 C–N Deoxythymidine
1240 νas PvO PO2 1195–1275 A form DNA backbone
1215 C–C–O–C Ribose
1105 ν C–O Ribose
1085 νsym PvO PO2 DNA backbone
960–970 ν C–O, C–C DNA backbone, deoxyribose

ν: stretching vibration, δ: bending vibration, as: asymmetric vibration, sym: symmetric vibration.
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them to the widely used HeLa cells. Primary cells cultured
from glioblastoma tissue acquired at resection were also ana-
lysed. Fig. 1 shows the result of PCA carried out on U87MG cell
spectra. In the score plot (Fig. 1A), hypoxic cell spectra can be
separated from normoxic cell spectra along the principal com-
ponent 1 (PC1) axis. Approximately 87% of normoxic and 92%
of hypoxic cell spectra are correctly separated. The structure of
the data shows continuity between the hypoxic and normoxic
cell spectra with an overlapping of the 2 groups, meaning that
some of the hypoxic cells have phenotypic features of nor-
moxic cells. The loadings plot in Fig. 1A shows negative peaks
at 1740, 1465, 1455, and 1380 cm−1, which is interpreted as an
increase in the lipid signal in the hypoxic cells, and negative
peaks at 1155, 1080 and 1025 cm−1, which are due to an
increase in the carbohydrate signal in the hypoxic cells. The
profile of the carbohydrate signal is similar to that of glycogen
suggesting an increase in glycogen storage in hypoxic U87MG
cells. Varimax rotation was used to collate all the spectral var-
iance between normoxic and hypoxic cell spectra into one
principal component that accounted for 30% of the spectral
variance. The remaining 70% variance was not relevant for
separating between the 2 groups. The two groups appear rela-
tively homogeneous; 4 spectra from the hypoxic groups (indi-
cated by arrows in Fig. 1A) are clustered apart from the rest of
the hypoxic cells along the PC1 axis. Upon inspection these
spectra present high levels of glycogen and lipids. Similar
levels of glycogen were previously found in hepatocytes40 and
in stem cells.28,41 Since the data structure appears unimodal
for each group, average spectra can be used to represent the
mean of each of the 2 cell populations (Fig. 1B). The difference
spectrum shows positive peaks at 1735, 1465, 1455, 1155,
1080, and 1025 cm−1, evidencing an increase in lipid and gly-
cogen signals in hypoxic cells at 24 h.

The same analysis was carried out for HeLa, D566 and
primary GBM cells. The PCA score plots and loadings plots are
shown in ESI Fig. S1† and the results are recapitulated by the
difference spectra in Fig. 1C–E. For each of these cell types,
hypoxic and normoxic cell spectra can be separated in PCA.
Different spectral ranges and data preprocessing were used for
obtaining the best separation depending on the variations in
the original data. The spectral differences in the fingerprint
region (Fig. 1B–E) show that the spectral signature of the
hypoxic cells is different in each cell line compared to its nor-
moxic counterpart. Only U87MG cells presented an obvious
increase in the glycogen signal (Fig. 1B), suggesting an imbal-
ance between the increased glucose uptake and glucose usage,
which results in glycogen storage. Changes in the carbohydrate
region (950–1180 cm−1) in HeLa, D566 and primary GBM cells
were more subtle, potentially due to a tighter balance between
glucose uptake and glycolysis in these cells (Fig. 1C–E). All
hypoxic cells presented an increase in the lipid signal that
could be detected by an increase of the CvO peak at
1740 cm−1, and C–H peak at 1465 cm−1, in U87MG, HeLa and
primary GBM cells (Fig. 1B, D and E), and at 1170 cm−1 in
primary GBM cells only (peak hidden by the C–O from carbo-
hydrates in other cell lines). Moreover, there is an increase of

the C–H signal at 2920 and 2850 cm−1 in U87MG (data not
shown), D566 (Fig. S1A†) and HeLa (Fig. S1B†) cells. Small
changes in the profile of the protein bands were also detected
in all cell lines but no common feature could be observed for
the protein signal. The increase in lipid and carbohydrate
signals observed in most cells is commensurate with known
modifications of hypoxic cell metabolism such as lipid droplet
accumulation23 and increased expression of the GLUT1/
3 glucose transporters.6,42,43 In summary, each cell line
seemed to have a slightly different hypoxic signature, yet the
increase in the lipid signal was clearly a common feature for
all cell lines.

Severe hypoxia induces the same metabolic changes as mild
hypoxia

To assess if the spectral changes induced by hypoxia could be
dependent on the severity of the hypoxic switch, glioblastoma
cells were grown for 24 h in 0.1% O2, a level of O2 which has
been reported in certain regions of solid tumours.44 Although
this level of hypoxia is severe, short term exposure (<48 h) does
not compromise cell survival (Richards et al., submitted). The
FTIR spectra were then compared with cells grown for 24 h at
21% O2. It was possible to separate normoxic from hypoxic
cells by PCA as shown in Fig. 2 (D566 cells) and ESI Fig. S2†
(U87MG and primary GBM). Fig. 2A shows the score plot of the
PCA carried out in the fingerprint region on second derivative
spectra. Hypoxic and normoxic cell spectra can be almost per-
fectly separated by PC3 carrying 12% of the spectral variance.
Since loadings are difficult to interpret when using the second
derivative spectra, the difference spectrum was calculated
(Fig. 2B) and the difference spectra of mild hypoxia and severe
hypoxia are compared in Fig. 2C. The overall shape of the 2
difference spectra was the same, with the main variation
coming from baseline drift. Peaks at 1720, 1620–1630, 1400,
1370, and 1225 cm−1 could be observed in both difference
spectra. Subtle differences in the carbohydrate regions are
seen at 1145, 1100, and 1045 cm−1 related to the C–O stretch-
ing vibrations and were difficult to interpret, but could result
from small differences in the glucose/glycogen balance and in
the expression level of various glycoproteins.

The signatures of primary GBM cells and U87MG cells incu-
bated in severe hypoxia closely resemble those of their mild
hypoxia counterparts, with strong CvO, C–H and C–OH
signals in the primary GBM difference spectrum (Fig. 2D and
S2B†). There is also a clear glycogen signature in the U87MG
difference spectrum (Fig. 2E and S2B†). Surprisingly, severe
hypoxia did not seem to induce a change in the data structure
such as a total separation between the hypoxic and normoxic
cell spectra clusters in PCA (Fig. 2A, S2A and S2B†). We
observed an overlap between the hypoxic and normoxic clus-
ters, and few cells were not separated as with mild hypoxia.
This suggests that severe hypoxia does not cause stronger
metabolic changes that can be detected by infrared
spectroscopy.
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The hypoxia mimetic drug DMOG reproduces the same
spectral signature as hypoxia

The metabolic changes reported above are likely due to the
stabilization and activation of HIF in hypoxia and the sub-
sequent transcription of several HIF target genes involved in
metabolic reprogramming.24,45 HIF becomes stabilised in
hypoxia due to a reduction in its regulation by the prolyl

hydroxylase enzymes (PHD). Under normoxic conditions, the
PHDs hydroxylate HIF on two proline residues, leading to HIF
degradation.10 HIF becomes stabilised under hypoxic
conditions because the PHDs require O2 as a co-factor, there-
fore one way of chemically mimicking hypoxia is to inhibit
PHD activity with pharmacologically active substances such as
DMOG. U87MG and D566 glioblastoma cell lines were cultured
in the presence of DMOG for 24 h and compared to cells

Fig. 1 Cells grown under hypoxic conditions (1% O2) can be differentiated from normoxic cells (21% O2) by their infrared spectra at single cell
resolution. (A) Analysis of U87MG cell spectra by Principal Component Analysis (PCA) in the fingerprint (900–1800 cm−1) region. Left: score plot,
right: loadings plot. U87MG glioblastoma cells were grown for 24 h in normoxia (21% O2) or hypoxia (1% O2). The hypoxic (red) and normoxic (blue)
cell spectra can be separated along the PC1 axis. The arrows mark 4 cell spectra with extremely high levels of lipids and glycogen. (B) Average
spectra of U87MG cells after 24 h at 21% (red) and 1% (blue) O2. The spectral difference (green) shows signals from glycogen (1150, 1080 and
1025 cm−1) and weaker contribution from lipids (1740, 1460, and 1370 cm−1) and phosphates (1240 cm−1). (C) Average spectra of D566 glioblastoma
cells after 24 h at 21% (red) and 1% (blue) O2. The spectral difference (green) shows changes in the lipids, protein amide I and II, phosphate, and
carbohydrate regions. (D) Average spectra of HeLa cells after 24 h at 21% (red) and 1% (blue) O2. Spectral differences (green) arise mainly in the CvO
at 1740 cm−1, protein amide I and amide II bands and in the large CO band between 1180 and 900 cm−1, suggesting changes in the glycoproteins.
(E) Average spectra of primary GBM cells after 24 h at 21% (red) and 1% (blue) O2. The spectral difference (green) shows contributions from lipid
signals at 1740, 1450, 1370, 1170 and 1065 cm−1, and subtle changes in the carbohydrate region between 1000 and 1170 cm−1. All difference spectra
were multiplied by 10.
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grown at 1% and 21% O2. Spectra of individual cells were
recorded at 20 × 20 µm2 resolution and compared by PCA and
difference spectroscopy. The results for U87MG cells are
shown in Fig. 3. In the 900–1800 cm−1 region, the PCA score
plot (Fig. 3A) shows that normoxic cell spectra are clustered in
the negative PC values along the PC1 axis, while most DMOG
treated cell spectra are clustered in the positive PC values.
Hypoxic cell spectra are located between the normoxic and
DMOG treated clusters and among the DMOG cluster. A few
DMOG treated and hypoxic cell spectra are clustered further

along the PC1 axis, these cells being extremely rich in glycogen
and lipids. The loadings plot shows positive peaks character-
istic of lipid (1740, 1465–1450, 1380 cm−1) and carbohydrate
(1150, 1080 and 1025 cm−1) accumulation in hypoxia and
DMOG treated cells. The carbohydrate profile is evocative of
glycogen spectrum as in mild and severe hypoxia. PC1 looks
very similar to that of Fig. 1B and accounts for 51% of the
spectral variance, evidencing a slightly stronger effect of
DMOG over hypoxia on cell chemical composition. In Fig. 3B,
the difference spectra between normoxic and DMOG-treated

Fig. 2 The infrared signature of cells in severe hypoxia (0.1% O2) is similar to that of cells at 1% O2. D566 cells were grown at 0.1% and 21% O2. The
spectra of individual cells were compared by PCA. (A) The PCA score plot shows that hypoxic and normoxic cell spectra can be separated by their
spectral signatures along the PC3 axis. PC3 loadings show an increase in peaks at 1740, 1465, and 1380 cm−1, characteristic of lipids in the hypoxic
cells. (B) Average and difference spectra of D566 glioblastoma cells after 24 h at 21% (red) and 0.1% (blue) O2. The spectral difference (green) show
changes in the lipids, protein amides I and II, phosphate, and carbohydrate regions. (C) Comparison of difference spectra at 1% and 0.1% O2 showing
their close similarity. The main differences come from variations in baseline deviation and minor changes in the carbohydrate region. (D) Average
and difference spectra of primary GBM cells after 24 h at 21% (red) and 0.1% (blue) O2. The spectral difference (green) shows contributions from lipid
signals at 1740, 1450, 1370, 1170 and 1065 cm−1, and changes in the carbohydrate region between 1000 and 1160 cm−1, particularly at 1040 cm−1.
This difference spectrum is closely matched to that of 1% O2 in Fig. 1E. (E) Average and difference spectra of U87MG cells after 24 h at 21% (red) and
0.1% (blue) O2. The spectral difference (green) shows signals from glycogen (1150, 1080 and 1025 cm−1) and weaker contribution from lipids (1740,
1460 cm−1) and is comparable to that found in Fig. 1B.
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cells, or hypoxic and normoxic cells are shown, further sup-
porting their similar effect on cells. Comparable results were
obtained in the CH region (Fig. 3C) where DMOG treated and
hypoxic cell spectra were clustered together and separated
from normoxic cell spectra along PC2 and PC3 axes coding
for an increase in C–H in the hypoxic/DMOG treated cells at
2915, 2925 and 2850 cm−1. Continuity between the hypoxic,
normoxic and DMOG treated cell clusters was observed
supporting a continuum in the chemical composition of the
cells. In D566 cells, the DMOG treated cells were clustered
apart from the hypoxic cells on the same PCA axis showing
that DMOG effects were of the same nature but stronger
than hypoxia at 1% O2 in this cell line (ESI Fig. S3†). This is in

line with the strong effects of DMOG on HIF nuclear accumu-
lation and target gene transcription.4 These results demon-
strate that the metabolic changes induced by hypoxia and
detected by FTIR are likely due the accumulation of HIF and
its transcriptional activity. The stronger effects of DMOG com-
pared to hypoxia might be due to the total inhibition of the
PHD activity achieved by DMOG treatment compared to the
reduced activity obtained by hypoxic incubation at 1 and 0.1%
O2 (50% of activity in 1% O2

46).

Stability of the hypoxic signature over time

We also aimed at assessing the metabolic changes in chronic
hypoxia. U87MG, D566 and primary GBM cells were grown in

Fig. 3 Effect of the hypoxia mimetic drug DMOG on the chemical composition of U87MG cells. U87MG cells were grown at 21% O2, 1% O2 or
treated with 0.5 mM DMOG for 24 h. (A) PCA in the 900–1800 cm−1

fingerprint region. DMOG-treated and hypoxic cells separate from normoxic
cells along the rotated PC1 axis. Some hypoxic and DMOG-treated cells are clustered far along PC1, demonstrating an extreme reaction. Rotated
PC1 loading coding for 51% of the spectral variance shows features of lipid and glycogen signals similar to those found in Fig. 1A. The sign of the
rotated PC1 loadings is opposite to the sign of the PC1 loadings in Fig. 1A, but interpreted in conjunction with the positive location of the hypoxic
and DMOG-treated cells along the rotated PC1 axis in the score plot, this shows that hypoxic and DMOG-treated cells also have increased lipid and
glycogen storage in this experience. (B) Average and difference spectra of U87MG cells after 24 h with 21% (red), 1% (blue) O2, and 0.5 mM DMOG.
The spectral difference (green and light blue) shows very similar profiles for glycogen (1150, 1080 and 1025 cm−1), lipids (1740, 1460, and
1380 cm−1) and phosphate features (1235 cm−1). (C) PCA score and loadings plots in the CH region. Normoxic cells separate along the PC3 axis
coding for C–H signals from CH2 acyl chains of fatty acids at 2915 and 2845 cm−1. PC2 also contributes to the separation.
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normoxia and hypoxia (1% O2) up to 120 h and their spectra
were recorded and compared by PCA. Results are presented for
U87MG cells in Fig. 4, and for D566 and primary GBM cells in
ESI Fig. S4 and S5† respectively.

In Fig. 4, the PCA score plots at 24 and 72 h showed that
hypoxic and normoxic U87MG cells are separately clustered
with a continuum of chemical variations between the 2
clusters as previously shown in Fig. 1A, and ESI Fig. S2A and
S3A.† The PCA loadings were similar with an increase in lipid
and glycogen signatures in hypoxic cells. The magnitude of
the changes did not increase at 72 h with PC1 loadings
amounting to 28% of the spectral variance at 72 h and 31% at
24 h. However at 120 h, second derivative spectra had to be
used to get rid of the baseline shape variation. The hypoxic
and normoxic cell spectra were separated by PC1 coding for
65% of the spectral variance, but separation between the 2
clusters was less marked. No change was observed in the
carbohydrate range of the loadings which are dominated by
changes in the protein signal.

The separation between normoxic and hypoxic D566 cells
was more evident and consistent in the CH range (ESI
Fig. S4A–S4C†). Hypoxic and normoxic cell spectra could be
separated in PCA score plots at 24, 72 h and 120 h. The
spectral signature was an increase in the CH signals from
lipids (at 2920 and 2850 cm−1). Small variations in the loading
shapes at 120 h were probably related to variations in spectral
quality. Separation was less marked after longer hypoxic cul-
tures and the amount of variance between hypoxic and nor-
moxic cells dropped from over 30% at 24 h to 4% at 120 h.

In primary GBM cells, a separation between normoxic and
hypoxic cells could be detected for all elapsed time by PCA,
using second derivative spectra in the 900–1800 cm−1 region
(ESI Fig S5A–S5C†). The two clusters were best separated at
24 h. At 120 h the clusters were positioned closer and gave
only partial separation (79% of hypoxic spectra and 70% of
normoxic spectra were correctly separated). The hypoxic signa-
ture evolved with a loss of the contribution from protein at
120 h but an increase of the relative contribution of lipid

Fig. 4 Evolution of the hypoxic signature over time in U87MG cells. U87MG were cultured in 1% O2 for 24 h, 72 h and 120 h as indicated. (A) PCA
score and loadings plot at 24 h. (B) PCA score and loadings plot at 72 h showing the same hypoxic signature at 24 h. (C) PCA score and loadings plot
at 120 h showing only a partial separation of hypoxic and normoxic cells and a different spectral signature.
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signals (1740, 1471, 1380, 1180 cm−1) in PC1. Contribution
from phosphates (1250, 1090 cm−1) and possibly ribose (1120,
1060, 975 cm−1) appeared at 120 h in PC4.

Taken together, the results of the 3 GBM cell lines indicate
that the hypoxic signature does not increase with longer incu-
bations in hypoxia, but in fact manifests a slight decrease.
This suggests that cells might adapt in chronic hypoxia and
maintain a homeostasis that prevents major changes of the
chemical composition. In U87MG cells, the disappearance of
the glycogen signal may be explained by an enhanced initial
glucose uptake, which is transient, and that the primarily
stored glucose is used for glycolysis.

Subcellular resolution of the hypoxic signature

It is well known that the infrared spectra of cell nuclei and
cytoplasms are different, and it has recently been shown that
the perinuclear region containing the endoplasmic reticulum
(ER) and Golgi apparatus (GA) also has a specific spectral sig-
nature.41,47 The main differences were found in the CH2 : CH3

ratio (from ER/GA and organelle membranes and proteins)
and in the phosphate : amide ratio (from nucleic acids and
proteins). Since an increase in the lipid signal is one of the
main hypoxic signatures detected, we hypothesized that
changes in the nuclear : cytoplasmic ratio between individual
cells could be a confounding variable in trying to discriminate
between normoxic and hypoxic cells. Respiration is essentially
a cytoplasmic reaction, whilst the spectrum of a cell is domi-
nated by contributions from the thicker nucleus and peri-
nuclear area. This indicates that it could be more meaningful
to record spectra specifically from the cytoplasm. However, oxi-
dative damage triggered by cytoplasmic drugs can also affect
the chemical composition of the nucleus as previously shown
by Chio-Srichan et al.,48 hence the recording of spatially
resolved information from the nucleus should also be investi-
gated. A synchrotron source allows infrared spectra to be
recorded at the diffraction limit (3–25 µm in the mid-infrared),
essentially allowing spectra to be recorded at subcellular
resolution. As D566 cells are around 50–100 µm in their larger
axis and 20 µm on their smaller axis, measuring at 10 ×
10 µm2 spatial resolution allows the recording of spectra from
the nucleus or the cytoplasm. We measured D566 cells grown
in hypoxia at 1% and 0.1% O2 for 24 h and 120 h. A few
spectral maps were also recorded and one of them is shown in
Fig. 5. The chemical heterogeneity of a D566 cell is demon-
strated by plotting the absorption of specific peaks. The stron-
gest contrasts are observed for lipid peaks (C–H from CH2,
CvO from lipids) and phosphates, which illustrates the differ-
ences between the nucleus (strong PvO, no CvO) and the peri-
nuclear region (strongest C–H). The carbohydrate signal (COC,
COH) is spread throughout the cell. Normalised, averaged
spectra from all three cell compartments are shown in Fig. 5G
and evidence the differences in the CH and fingerprint regions.

The separation between hypoxic and normoxic cell spectra
by PCA was possible with cytoplasmic spectra at 24 h (Fig. 6A)
and at 120 h (Fig. 6B), using data in the fingerprint region. It
should be noted that separation by PCA was made easier by

the use of the spatially resolved data. The spectral signature of
hypoxia in the cytoplasm was linked to an increase of lipid
contribution in the spectra (1740, 1465, 1380, 1170 cm−1), but
changes in the protein signature (amide I and amide II
bands), in the phosphates (1250, 1080 cm−1), and in the carbo-
hydrates (1100, 1020 cm−1) were also clearly detected, which
was not evidenced in the spectra of the whole cell. The
amount of spectral variance (30–40%) between hypoxic and
normoxic cell spectra was similar at 24 and 120 h culture and
superior to the amount of variance observed for whole cell
spectra (12% in Fig. 2). It was also possible to separate the
hypoxic and normoxic cell spectra by PCA using the CH range
(data not shown).

Surprisingly, a very good separation was also obtained by
PCA with nuclear spectra at 24 h (Fig. 6C) and 120 h (Fig. 6D)
using the fingerprint region. The spectral signature of hypoxia
in the nucleus was remarkably similar to that recorded in the
cytoplasm but with a stronger contribution from the protein
absorption in the principal component loadings. The protein
signal was the dominating contribution in the separation,
likely due to the low lipid and high protein concentrations in
nuclei. Although the sampled area was smaller than most
D566 nuclei, some contribution from the perinuclear region
could not be totally avoided due to diffraction and small errors
in motorized stage movements, explaining why some lipid con-
tribution was still detected. It was also possible to separate the
hypoxic and normoxic cell spectra by PCA using the CH range
(data not shown).

In conclusion, using spatially resolved data from the
nucleus and cytoplasm allowed a marked improvement in the
separation between hypoxic and normoxic cell spectra,
especially at 120 h culture. The spectral signature from
hypoxia changed in the nuclei compared to the cytoplasms
due to a higher contribution of protein signal. This could help
achieve a better detection of hypoxic cells, especially for those
undergoing weak chemical changes such as D566 cells.

Discussion
Infrared microspectroscopy to detect chemical changes
triggered by hypoxia

We have used synchrotron radiation infrared microspectro-
scopy to investigate the chemical changes that may occur in
cells exposed to hypoxia and to reveal that the spectra of cells
grown in hypoxia contain subtle chemical composition differ-
ences that could be separated by PCA from the spectra of cells
grown in normoxia. The spectral signature depends on the cell
type, lipid accumulation being a common signature for all cell
types. It is detected by changes in the lipid esters (1740 cm−1),
phospholipids (1170 cm−1), and methylene (2915, 2850, 1465,
1380 cm−1) infrared bands. These features can potentially be
used for detecting hypoxia in tumour cells. Accumulated high
levels of glycogen are also observed in hypoxic U87MG. These
observations are fully consistent with the metabolic repro-
gramming induced by hypoxia, with HIF impacting on both
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cellular anabolism (glycogen and lipid synthesis) and catabo-
lism (glycolysis)49,50 (for a review see ref. 1). This was further
confirmed by the induction of HIF by DMOG (Fig. S6†) which
gave the same spectral signatures than cultures in hypoxia in
the two cell lines investigated. These results constitute the first
demonstration that cell infrared spectra can be used to
discriminate between hypoxic and normoxic cells. Only one
similar study has been published previously, by Petibois et al.,
who studied cell extracts and supernatant media from U87MG
and A549/8 cells cultured in hypoxia and normoxia.51 The
authors found differences in lactic acid and glucose concen-
trations, in addition to changes in lipid peroxidation triggered
by hypoxia. Surprisingly, a decrease in the CH2 : CH3 ratio
under hypoxic conditions (3% O2) was reported, while under
our culture conditions (1% and 0.1% O2) an increase in the
CH2 peaks under hypoxic conditions was always detected, in
agreement with the fact that hypoxic cells accumulate lipid

droplets in their cytoplasm. Also, in contrast to our results, no
change in glycogen levels was reported in U87MG cells. These
inconsistencies are likely to come from the fact that we
measured the whole cell composition directly while Petibois
et al., worked on cell extracts and conditioned culture medium
after cell removal. Moreover, the extensive use of curve fitting
procedures in their study and the lack of multivariate statistical
analysis are not the best appropriate approach for data analysis.

Hypoxic hallmarks and inter/intra-tumoural variations

The increase in cell lipids under hypoxic conditions was
modest, yet clear and consistent for all 4 cell types studied.
This could therefore constitute a robust hypoxic hallmark.
Magnetic resonance spectroscopy has previously been used in
the C6 rat glioma model to investigate changes in lipids,
which were reported in cells experiencing severe prenecrotic
hypoxia.52–54 Nevertheless, FTIR measurements for hypoxia

Fig. 5 Heterogeneity in glioblastoma cells mapped at high spatial resolution. (A–F) Example of a D566 cell grown for 24 h at 1% O2 mapped at 6 ×
6 µm2 resolution. The cell was 116 µm in length. (A) Bright field micrograph. The distribution of (B) CH2 from aliphatic lipids, (C) CvO from lipid
esters, (D) C–O and PvO from polysaccharides and nucleic acids, (E) amide I from protein, and (F) PvO from nucleic acids and proteins, illustrate
the heterogeneity between the nucleus, the cytoplasm and the perinuclear region. (G) Average spectra from the nuclear (blue), perinuclear (red) and
cytoplasmic (green) regions show large differences in the CH (2800–3000 cm−1) and fingerprint regions CvO (1740 cm−1), PvO (1240 cm−1) and
C–O (1000–1180 cm−1) contributions within one cell. Spectra were normalized to the amide I intensity.
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detection in brain tumours might be challenging in a clinical
set-up, due to the large variations in lipid signals in brain
tissue. This is due to the presence of different cell types with
various levels of sphingolipids, phospholipids, and
myelin.55–58 Gaigneaux et al. reported the infrared spectra of
9 glioma cell lines (including U87MG) and whilst no large vari-
ation in lipid levels were detected between the cell lines, they
did however find correlations between wavenumbers in the CH
region and their in vitro migration and in vivo aggressiveness.59

We also observed variations in the carbohydrate signal which
were particularly strong in U87MG cells where accumulation of
glycogen was detected at levels comparable to those found in
hepatocytes40 and stem cells.28 This could be due to differ-
ences in glucose uptake and metabolism and varying rates of
glycolysis between cell types. Hypoxia induces the expression
of genes encoding the enzymes required to convert glucose to
glycogen, including hexokinase (HK1 or HK2), phosphogluco-

mutase 1 (PGM1), UDP-glucose pyrophosphorylase (UGP2), gly-
cogen synthase (GYS1), glycogen branching enzyme (GBE1), as
well as the gene encoding PPP1R3C, which activates GYS1 and
inhibits liver-type glycogen phosphorylase (PYGL), the enzyme
that breaks down glycogen.11 PYGL is expressed in U87MG
cells, and its knockdown increases glycogen accumulation.60

Similarly, phosphoglucomutase 1 is overexpressed several fold
in hypoxic U7MG cells.61

Robustness of the FTIR chemical signatures

As expected, the infrared signature of hypoxia was related to
the main macromolecules and no changes from small meta-
bolites such as ATP, ADP, pyruvate or lactate could be detected.
There was no clear difference between the hypoxic signature of
cells exposed to mild or severe hypoxia and the hypoxic signa-
ture did not evolve strongly over time. This suggests that
hypoxic cells adopt a metabolic fingerprint that is stable and

Fig. 6 Spatially resolved data improve the separation between hypoxic and normoxic cell spectra at every time-point. (A) Spectra of normoxic and
hypoxic D566 cell cytoplasms at day 1 can be separated by PCA. PCA score plot, loadings of PC1 and PC2 capturing a cumulative 30% of the spectral
variance, average and difference spectra. (B) Spectra of normoxic and hypoxic D566 cell nuclei at day 1 can be separated by PCA. PCA score plot,
loadings of PC2 coding for 17% of spectral variance, average and difference spectra. (C) Spectra of normoxic and hypoxic D566 cytoplasms at day 5
separated by PCA. PCA score plot, loadings of PC1 coding for 38% of the spectral variance, average and difference spectra. (D) Spectra of normoxic
and hypoxic D566 cell nuclei at day 5 separated by PCA. PCA score plot, PC2 loadings coding for 23% of spectral variance, average and difference
spectra.
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precisely regulated. The fact that different levels and durations
of hypoxia have very similar spectral signatures may make it
easier to interpret the hypoxic signature in tissues. We
observed that the hypoxic signature becomes weaker after
longer periods which may imply that it will be more difficult to
detect in tumours that have been in hypoxia for an extended
time period. Nevertheless, hypoxic episodes in tumours have
been shown to be highly dynamic with cycles of hypoxia and
reoxygenation,62–64 indicating that tumour cells might never
experience long periods of hypoxic exposure without episodes
of re-oxygenation. Our results highlight the potential of FTIR
for tumour hypoxia detection in patient samples. We never
observed complete separation between the hypoxic and nor-
moxic spectra clusters, indicating that there is a continuum of
chemical states between hypoxic and the normoxic cells. This
could be due to the fact that some cells in normoxic cultures
exist in an endogenous hypoxic state induced by mitochon-
drial respiration as shown by Prior et al.65 Conversely, some
cells grown in hypoxia may have managed to preserve a nor-
moxic phenotype by more efficient scavenging of oxygen.

We have shown that spatially resolved data recorded either
in the nucleus or the cytoplasm of cells allowed separation of
hypoxic and normoxic D566 cells even after long culture dur-
ations. The signature found in the nucleus showed a stronger
contribution of protein-related signals than the cytoplasm.
This could potentially be linked to changes in histone methyl-
ation/acetylation patterns60,66 as histones are the major type of
protein found in the nucleus.

Conclusion

The combination of synchrotron radiation FTIR microspectro-
scopy and multivariate statistical analysis has allowed identifi-
cation of an increase in lipids in glioblastoma cells as an
intrinsic marker of hypoxia. This signature was detected in
cells grown under low oxygen conditions without the need for
external markers, thus avoiding any problems associated with
dye penetration, or antibody quality and reproducibility. Hence
such an approach used here in cell lines, may in the future be
applicable to glioblastoma tissue samples in which it is necess-
ary to detect hypoxia for grading, staging and prognosis pur-
poses. Synchrotron radiation FTIR microspectroscopy with its
high brilliance is intrinsically well adapted for analysing single
cells and even subcellular compartments, a mandatory require-
ment to study organelle specific events such as mitochondrial
respiration and cytoplasmic metabolism. It is also well adapted
to study the heterogeneous nature of tumours with regions of
normoxia, transient and chronic hypoxia.
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